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Abstract

We estimate the impacts of climate on economic growth using Gross Regional Product (GRP)
for more than 1,500 regions in 77 countries. In temperate and tropical climates, annual temperature
shocks reduce GRP whereas they increase GRP in cold climates. With respect to long-term climate
conditions, one degree of temperature increase reduces output by 2-3%. The effect of annual or long-
term precipitation is found to be less important and less robust among specifications. For projected
global warming of 4°C until 2100, we find that regions lose 9% of economic output on average and
more than 20% of output in tropical regions.
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1 Introduction

Anthropogenic climate change due to greenhouse gas emissions is the foremost driver of global

warming since industrialization (IPCC, 2013, pp. 44-45). Without additional measures to re-

duce carbon emissions and to decouple economic growth from emissions, global mean surface

temperature is likely to increase by 2.6-4.8°C within this century (IPCC, 2013, p. 60). Extreme

weather events are expected to increase in frequency and intensity as global climate change ac-

celerates (Rahmstorf and Coumou, 2011; IPCC-SREX, 2012). Temperature fluctuations and

weather extremes have been shown to have major impacts on economic activity (Dell et al.,

2014; Carleton and Hsiang, 2016), human well-being (Patz et al., 2005; Hsiang et al., 2013;

Deschenes, 2014) and functioning of ecosystems (Hoegh-Guldberg and Bruno, 2010; IPCC,

2014). For the design of optimal policies to mitigate and cope with climate change as well as

for the design of international agreements to foster cooperation on global emission reductions,

a solid understanding of the costs and benefits of climate change mitigation is necessary. In-

tegrated assessment models that aim to calculate optimal climate policies build on the concept

of a damage function. The damage function is fit to aggregated sectoral and location-specific

damage estimates that are extrapolated to the global scale (Nordhaus and Boyer, 2000). At-

tempts to quantify the economic impacts of climate change, however, show large variability

in damage estimated across regions and sectors. For example, impacts of 5°C warming have

been estimated to reduce global GDP by 0 to 20 percent (Stern, 2008). The poor theoretical

and empirical foundation for such damage functions has widely been criticized (Pindyck, 2013;

Farmer et al., 2015; Moore and Diaz, 2015; Stern, 2016; National Academies of Sciences and

Medicine, 2017).

There is a growing body of empirical research that aims to improve these damage estimates.

Early empirical works on climate and growth (Sachs and Warner, 1997a,b; Nordhaus, 2006)

used cross-sectional regression analysis, which is subject to omitted variable bias (Hsiang,

2016). This can be particularly problematic as economic performance is strongly dependent

on political and economic institutions (North, 1987; Acemoglu et al., 2005). Climatic condi-

tions, in turn, may have affected the quality of political and economic institutions during and

after colonialization (Acemoglu et al., 2001). Thus, cross-sectional regressions can lead to

biased estimates of current climate on current growth, as the relationship between institutions

and historical climate conditions (which are highly correlated to current climate conditions) is

omitted.

A rather new strand of literature uses panel regression models to explore the relationships

between climate, weather, human activity and economic outcomes based on panel data (Dell

et al., 2014). These models are less prone to omitted variable bias as they control for unob-

served time-invariant group heterogeneity, including, for example, differences in institutions.

They have been applied to analyze the relationship between temperature and growth (Dell et al.,

2009, 2012; Burke et al., 2015), labor productivity (Deryugina and Hsiang, 2014) human capi-
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tal (Zivin and Neidell, 2014), energy demand (Auffhammer and Mansur, 2014) and crop yields

(Schlenker and Roberts, 2009). These works provide insights on potential impacts of future

climate change, partially with much higher economic losses from anthropogenic warming than

previous estimates used in integrated assessment models (Burke et al., 2015).

While the strength of panel regression techniques is to avoid omitted variable bias, their

weakness is their focus on short-term, weather-related shocks rather than variability in long-

term climate conditions. The differentiation between short-term impacts, extreme events and

long-term impacts is important, as economies and societies may be better equipped to respond

to long-term changes than to short-term changes or to extreme events by investing in adapta-

tion. Comparing cross-sectional and panel estimates, Dell et al. (2009) suggest that adaptation

reduces half of the negative impacts of temperature shocks. Yet, a rigorous empirical analysis

of climate change impacts on economic outcomes on different temporal scales is lacking. One

analysis in this direction is a recently published paper by Burke and Emerick (2016). How-

ever, this work has a limited geographical and sectoral focus as it only considered agricultural

yields in the US. Existing analyses on the impact of weather shocks on GDP have further

been criticized to ignore those climate conditions that affect the marginal response to weather

(Mendelsohn, 2016) or to neglect trends in climate variables.

This paper aims to fill this gap by using a panel on subnational GDP data – Gross Re-

gional Product (GRP) – that allows for depicting local weather as well as climate conditions

on various time scales. We are therefore able to address some of the shortcomings of pre-

vious analyses with respect to regional scope, temporal scale and specific technical issues.

We further extend these works by including human heat-stress related climate variables, the

Simplified Wet Bulb Globe Temperature-index (Budd, 2008; Willett and Sherwood, 2012).

As humidity and vapor pressure is expected to increase further under climate change (IPCC,

2013), the increase in sensed temperature will be larger than the increase in actual air tem-

perature. Some regions, e.g. in the Arabian peninsula, might become even inhabitable due to

excessive wet-bulb temperature under future climate change (Pal and Eltahir, 2015).

We find strong and robust evidence that GRP responds to annual temperature shocks as

well as long-run temperature levels (climate). With respect to precipitation, only annual shocks

matter. The estimated marginal effects of temperature increase are slightly higher than previous

estimates. In particular, hot regions are more strongly affected by further warming than cooler

regions. Furthermore, the impact of short-run shocks and long-run climate conditions on GRP

is of similar magnitude which suggests little macroeconomic adaptation.

Our paper is organized as follows. We first develop a conceptual framework for under-

standing the differences between weather (short-run) and climate (long-run) impacts on GDP.

We next explain the data and the empirical strategy (Section 3). Section 4 provides the key

results for panel and cross-sectional estimates of climate impacts. We apply these estimates

to projected greenhouse gas concentration trajectories to assess possible GDP losses under a

3



business-as-usual scenario in Section 5. The last section concludes with implications for future

research.

2 Weather vs. climate impacts in the neoclassical growth
model

To frame our empirical analysis, we consider a simple neoclassical growth model with unan-

ticipated, temporary annual weather shocks ω and anticipated, permanent changes in climate

Ω on labor productivity or capital stocks. Output per capita y is produced using a neoclas-

sical production function y(t) = F [K(t),A(t)L(t)]/L(t) with labor-augmenting technological

change A(t), capital K(t) and labor L(t). As F(·) is assumed to be homothetic of degree one,

y(t) = f [k(t),A(t)] with k(t) per-capita capital. Following the standard approach in climate-

economy models (Nordhaus, 1993), we assume that technological progress A(t) is exogenous

and technology grows at the constant rate gA.

A basic consequence from the neoclassical growth model is that per-capita output grows at

the constant rate gA, augmented by a convergence term ψ(·) (Barro and Sala-i Martin, 2003):

g :=
d ln[y(t)]

dt
≈ gA +ψ[y(t)/y∗(t)] (1)

with ψ ′(·)> 0 and y∗(t) the per-capita GDP along the balanced growth path (BGP). Thus, the

lower the per-capita GDP is with respect to the BGP GDP of the economy, the higher is the

growth rate. For t → ∞, the per capita GDP growth rate approaches the growth rate of the

technology gA.

Previous works emphasized that the level of labor productivity levels and agricultural yield

depends on weather, ω , and climate, Ω, (Mendelsohn et al., 1994; Schlenker and Roberts,

2009; Deryugina and Hsiang, 2014) implying A(t) = φ(ω,Ω)egAt . If weather shocks, e.g.

storms or floods, destroy assets, they also affect depreciation of capital (Hsiang and Jina,

2015). In the growth model, capital stocks would therefore evolve according to dK/dt =

I−δ (ω,Ω)K.

A weather shock ω at time t ′ is temporary and unanticipated (and assumed to be not serially

correlated). It reduces per-captia GDP instantaneously by ∂ f (k,A)
∂A

φ(ω,Ω)
ω

. Because of lower

GDP per capita during a negative shock, growth for t > t ′ will be higher than without the

shock due to (1). Long-run per-capita GDP levels will not be affected and follow a balanced

growth path. A shock on capital has qualitatively the same dynamics: output is reduced by
∂ f (k,A)

∂k
∂δ (ω,Ω)

∂ω
and growth for t > t ′ increased to catch up with GDP levels along the balanced

growth path. Hence, within the neoclassical production framework, weather shocks affect

GDP instantaneously but the GDP loss fades out over time and diminishes to zero. Damages

to labor productivity or capital stocks do not have permanent implications on living standards.
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Permanent anticipated changes in climate, Ω, however, do affect the long-run wealth level

of the economy but not the long-run growth rates. A permanent reduction in A due to Ω implies

a lower technology level and, thus, a downward shift of the balanced growth path for per-capita

GDP y∗(t). A permanent increase in capital depreciation δ implies a similar reduction in the

balanced growth path through the Euler equation which is, along the balanced growth part,

given by f̃ ′(k̃) = ρ + δ (ω,Ω)+η(c)gA with ρ the pure time preference rate of households

and η(c) ≥ 0 the inverse of the intertemporal elasticity of substitution of the utility function.

The tilde denotes functions and variables in intensive form, i.e. divided by A(t). As f̃ ′′(k̃)< 0

holds, a higher depreciation implies a lower capital stock k̃.

The neoclassical framework therefore provides two testable hypotheses: unanticpiated

temporary shocks affect GDP instantaneously and are followed by a growth reversal effect

while anticipated and permanent changes in climate lead to permanently different income per

capita.

3 Data and empirical strategy

For the climate data, gridded data at 0.5 degree resolution from the Climate Research Unit of

the University of East Anglia (CRU TS v3.23 Harris et al., 2014) are used. The climate data

are aggregated to the regional level where the highest administrative unit of a country from

the GADM database is used. Hence, states in the US and provinces in Canada are considered

as regions in our dataset. The CRU TS 3.23 contains monthly observations from 1901 to

2014. It is chosen because of its high spatial resolution which allows for a mapping of climate

conditions to subnational administrative units. The CRU data are statistically interpolated

across weather stations. As we include only countries in our database which have GDP data

at the subnational level, country selection will be biased to countries with higher statistical

capacity. Hence, statistically interpolated data may be more accurate than re-analysis data

which are more advantageous for data-poor regions (Auffhammer et al., 2013). The data are

processed using GNU R. In order to ensure a precise assignment of climate information to

administrative units – in particular if an administrative unit is smaller than a 0.5◦ grid cell

or lies only partly in it – we apply a two-step algorithm. In a first step, the gridded climate

information at 0.5 degree resolution is translated into information on a 0.25◦ grid assuming

that each 0.5◦ grid cell consists of four 0.25◦ grid cells and that the climate data is the same

for all four cells.1 In a second step, the algorithm considers 100 equally distributed points in

each 0.25◦ grid cell and then counts how many of those lie within the administrative unit. The

respective percentage is then used as a basis for the region-specific aggregation of the climate

1For Europe, higher-resolution climate data at 0.25 degree provided by the E-OBS gridded dataset (Haylock et al.,
2008) for the years 1950-2016 are used for robustness checks. For further robustness checks of the cross-sectional
analysis, the WORLDCLIM 2 database (Fick and Hijmans, 2017) on climate variables for 1970-2000 are considered.
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data. Robustness checks with alternative climate data are conducted.

Further geographical variables are obtained from various sources: Distance to navigable

rivers and distance to coast are taken from CIA World DataBank II. Altitude is obtained from

the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Data on cumulative

oil and gas reserves is based on USGS World Petroleum Assessment Data and taken from the

data appendix of Gennaioli et al. (2014).

Temperature projections for 2013-2099 in accordance with the Representative Concentra-

tion Pathway 8.5 (business-as-usual scenario, (Van Vuuren et al., 2011)) are derived from the

climate dataset of the Intersectoral Impact Model Intercomparison Project (ISIMIP, (Warsza-

wski et al., 2014)). Precisely, we use data, also at 0.5 degree resolution, that originate from

the Princeton Earth System Model of the Geophysical Fluid Dynamics Laboratory (GDFL-

ESM2M, (Dunne et al., 2012)) and include a bias-correction technique (Hempel et al., 2013)

to ensure long-term statistical agreement of the projections with observational data from the

WATCH database (Weedon et al., 2011).

We use annual Gross Regional Product (or related data) as a measure of economic activity

on the regional level. These data are retrieved from various statistical agencies of central or

federal governments (see Tab. 8 in the Appendix). We restrict the regression on economic data

from 1980 onward as for earlier years the panel would become extremely unbalanced due to

data scarcity (Fig. 6). We convert values in country-specific currencies to USD using exchange

rates from the FRED database of the Federal Reserve Bank of St. Louis. This conversion

avoids diverging national inflationary tendencies.

In the empirical analysis, we use mean temperature ET and mean precipitation EP over

longer periods (30 years) as major climate variables, Ω = (ET,EP). We use two different

approaches to calculate weather shocks ω = (T,P) in temperature T and precipitation P: Con-

sistent with the time-series literature, we use first-differences of annual climate data and ob-

tain a stationary series on changes in annual climate. Alternatively, we follow the approach

of Mendelsohn (2016) and calculate climate shocks as deviations from the long-term mean.

Hence, in a ‘normal’ year, we would observe (T,P) = (0,0). As temperature and precipitation

follow trends, we de-trend both variables for each region assuming linear trends with respect

to their 1980 values.2 Based on the conceptual growth model in Section 2, we are interested

in two basic relationships: (i) the role of weather, conditional on climate and (ii) the role of

climate on growth, and estimate the following two basic models:

gi,t =
S

∑
s=0

α1Ti,t−s +
S

∑
s=0

α2Ti,t−sτi,t−s + pi(t)+µt + εi,t , (2)

yi = β1τi + γXi +δc +ηi, (3)

2In our sample, average temperature increases by 0.24°C per decade. Without de-trending, these gradual changes
would be reflected in the temperature shock variable T after some time.
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with S denoting the number of time lags. In particular, we include an interaction term between

weather and climate in the panel regression as these two might not be additively separable

(Mendelsohn, 2016). Thus, we can capture the weather effect on GDP conditional on the

prevailing climate.

While the panel model (2) captures the short-term dynamics of weather on growth, the

cross-sectional regression (3) is relevant for long-term dynamics which account for adaptation

(change in technology) in particular. The per-capita growth rate of region i, compared to

GRP in the previous year, is denoted by git ; α1 measures the climate-independent weather

impact while α2 measures the marginal impact of weather conditional on climate. Region or

country-specific time trends (including fixed-effects) are captured by pi(t); µt includes year-

fixed effects. Because of the regional fixed effects and because climate is almost time invariant

for the considered period, we cannot include climate directly in the panel regression.

For analyzing the impact of climate on GRP, we estimate in (3) log per capita GRP yi in

region i with linear temperature and precipitation (β1). Equation (3) is a cross-sectional regres-

sion for a specific time period; in our base specification, we use the 2005-2014 decade as it

provides the highest data coverage. We further include regional covariates with respect to ge-

ography and resource endowments, Xi, and country fixed-effects, δc, to account for unobserved

country-heterogeneity, e.g. institutions, that affect GDP.

Recent research has emphasized the role of other weather and climate variables than tem-

perature and precipitation (e.g. Zhang et al., 2017). We tested for including cloud cover, water

vapor pressure and climatological potential evapotranspiration from the CRU database in the

regressions. Data quality is, however, highest for temperature and precipitation in the CRU

database (Harris et al., 2014): Vapor pressure has less dense observations than temperature

and precipitation; it relies therefore on many synthetic observations to fill data gaps. Evapo-

transpiration is derived from other climatological variables like temperature, precipitation and

vapor pressure, and therefore not independent. Also, there exists a high correlation between

these additional climate variables and temperature and precipitation causing multicollinearity

problems in the regression. We therefore exclude them in our analysis and do not report them.

Besides high temperature, high temperature combined with high humidity causes heat

stress for humans as it reduces the natural cooling mechanism through transpiration. Various

papers have therefore used (Simplified) Wet Bulb Globe Temperature (SWBGT) as an indi-

cator for sensed temperature and heat stress (Somanathan et al., 2015; Pal and Eltahir, 2015;

Matthews et al., 2017) which affects labor productivity (Hsiang, 2010) and mortality (Barreca

et al., 2016). With the data available from the CRU data, we calculate SWBGT according to

the approximation given in Willett and Sherwood (2012):

SWBGT = 0.567T̃ +0.393V +3.94,

with T̃ = ET +T the actual air temperature and V the vapor pressure. Because of the large
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diurnal temperature variation, we do not use the mean temperature, but the (averaged) daily

maximum temperature provided in the CRU data for calculating SWBGT. Critical thresholds

for SWBGT range from 25 (heavy activities) to 30 (light activities). Values larger than 35

are considered to be dangerous (Willett and Sherwood, 2012; Pal and Eltahir, 2015; Matthews

et al., 2017).

Table 1: Summary statistics - annual panel data

Variable Obs Mean Std. Dev. Min Max
Annual GRP growth in region 29863 .062 .157 -2.442 2.303
Change in annual mean temperature (°C) 29752 .031 .688 -3.655 3.573
Change in annual precipitation (1000mm) 29752 .002 .279 -2.039 1.92
Temperature shocks (de-trended) 29752 -.065 .555 -3.314 2.744
Precipitation shocks (de-trended) 29752 .005 .21 -1.509 1.681
Temperature mean (de-trended, 1980) 29752 13.974 8.29 -14.178 28.697
Precipitation mean (de-trended, 1980) 29752 1.096 .73 0 4.823
SWBGT mx = 31,32 29863 .114 .318 0 1
SWBGT mx = 33,34 29863 .121 .326 0 1
SWBGT mx = 35,36 29863 .049 .215 0 1
SWBGT mx = 37,38 29863 .012 .107 0 1
SWBGT mx = 39,40 29863 .001 .034 0 1
Coast (dummy) 29863 .444 .497 0 1
Port (dummy) 29863 .318 .466 0 1
Distance to coast (log km) 29849 4.716 1.45 .118 7.739

Table 2: Summary statistics - cross-sectional data

Variable Obs Mean Std. Dev. Min Max
Regional GRP (log USD) 1515 8.723 1.4 5.193 12.026
Annual mean temperature (°C) 3039 18.17 8.204 -20.623 30.395
Annual precipitation (1000mm) 3039 1.148 .795 0 5.18
Cum Oil Gas (log mln bbl OE) 3522 0 .004 0 .122
Distance to coast (log km) 3501 11.098 2.039 4.962 14.647
Distance to river (log km) 3473 10.498 1.316 6.215 15.592
Altitude (km) 3516 .542 .628 -.012 4.882
Surface area (log km2) 3521 8.231 2.689 -1.204 15.039

Tab. 1 and Tab. 2 show the summary statistics for the panel and cross-sectional analysis,

respectively. Average annual per-capita growth in USD is 6.2%. The high variability of growth

is mainly driven by the large volatility of economic growth over time (as the within standard

deviation is larger than the between standard deviation). There are some very high GRP growth

rates in the data that are linked to structural breaks in the underlying data sources (e.g. change

of data source or deflator). We include structural break dummy variables for each of these

changes in data sources.

Temperature and precipitation are more stable over time but show large spatial variability.

Weather variables have been de-trended and de-meanead before they are included in the unbal-

anced GRP data. The temperature and precipitation shocks in Tab. 1 have non-zero means as

only those year-region observations with non-missing GRP data are included in the panel. The

SWBGT dummies contain the maximum Simplified Wet Bub Globe Temperature within one

year. In about 11% of the years, the SWBGT reached maximum values of 31 or 32°C while it
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reached only in 1% of the year values of 37°C or larger. Almost 45% of the observations are

in regions with a coast and 32% in regions with port.

Comparing Tab. 1 with Tab. 2 indicates that inter-annual temperature variation is rather low

(standard deviation of 0.688 (change) and 0.555 (deviation)) while spatial variability of long-

term temperature is large (standard deviation of 8.204). The discrepancy is less pronounced

for rainfall.

4 Results

4.1 Annual temperature and precipitation shocks

We first run regression model (2) with first-differenced weather data, exploiting the annual

panel structure of our data. Hence, we exclude the direct impact of the time-invariant local

climate τi because of its perfect collinearity with region fixed-effects but include interaction

terms with weather shocks. Year fixed-effects and region fixed-effects are included to account

for various drivers of regional growth besides local climate (such as global covariate climate

shocks like El Niño, economic shocks as well as time-invariant local geographic or institutional

conditions). Additionally, we include quadratic country-specific time trends which address

changes in institutions and political or economic conditions over time that affect growth rates.

Standard errors are clustered at region level.

Tab. 3 shows the main results, using annual changes in temperature and precipitation as

weather shock variables. Column (1) is a linear regression with one lag. The cumulative

effects (at the bottom of the table) indicate that an increase of annual mean temperature by 1°C

in a specific region reduces GRP by 0.6% in that region, with most of the reduction occurring

in the year after the temperature increase. An additional amount of rainfall of 100mm in one

year increases GRP by 0.4%. Both estimates are highly statistically significant. In column

(2), intertemporal interaction effects are included. If temperature increases by 1°C for two

years in a row, GRP decreases by 2% while the impact of precipitation is close to the estimate

in (1). This indicates that the impact of weather events is not independent of past weather

events. Finally, column (3) displays the results where annual temperature and precipitation

changes are interacted with the prevailing long-term climate conditions. While the interaction

term is irrelevant for precipitation, it is highly statistically significant for temperature. The

resulting marginal effects of a temperature change conditional on climate are shown in Fig. 1.

We find stronger negative impacts for most regions compared to Burke et al. (2015) (see Fig. 7

in the appendix for a comparison). While a 1°C temperature increase reduces GRP by 0.8%

in a region with long-term mean temperature of 10°C (a typical temperate climate region),

it reduces GRP by 4.6% in a region with long-term temperature of 26°C (a typical tropical

climate region).
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Table 3: Panel Regression: Main Results (Using Weather 1st-Diff)

(1) (2) (3)
T -0.00218∗ -0.00115 0.0102∗∗∗

(0.00123) (0.00120) (0.00195)

L.T -0.00414∗∗∗ -0.00328∗∗∗ 0.00588∗∗∗

(0.00125) (0.00120) (0.00209)

T × L.T -0.0160∗∗∗

(0.00129)

T × ET -0.00135∗∗∗

(0.000187)

L.T × ET -0.00104∗∗∗

(0.000193)

P 0.0109∗∗∗ 0.0107∗∗∗ 0.00631
(0.00399) (0.00393) (0.0109)

L.P 0.0304∗∗∗ 0.0311∗∗∗ 0.0321∗∗∗

(0.00360) (0.00358) (0.00944)

P × L.P -0.00325
(0.00673)

P × EP 0.000618
(0.00466)

L.P × EP -0.00275
(0.00437)

Observations 29307 29307 29307
N regions 1545 1545 1545
bic -38109.1 -38269.2 -38120.5
T (cum) -.0063 -.0204 .0161
T (cum) [SE] .0022 .0027 .0037
T × ET (cum) -.0024
T × ET (cum) [SE] .0003
P (cum) .0413 .0386 .0384
P (cum) [SE] .0059 .0097 .0148
P × EP (cum) -.0021
P × EP (cum) [SE] .0066

Standard errors in parentheses
(cum) - cumulative effect over lags. [SE] - standard error. All standard errors clustered at region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 1: Top: Marginal effect of annual temperature change according to column (3) in Tab. 3. The shaded area
indicates the 95% confidence interval. Bottom: density of temperature observations in our panel.
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There are various reasons for the discrepancy between our estimates and those of Burke

et al. (2015). First, one strength of our approach is that our estimates are based on spatially

highly resolved data. Thus, our estimates can account for potentially large regional variations

in the data which is averaged out at the national level. Second, Burke et al. (2015) use a differ-

ent specification with temperature and temperature squared while we rely on first differences

of temperature and an interaction term with long-term temperature. In addition to using first

differences, we use the deviation of annual temperature from the long-term de-trended temper-

ature mean and its interaction with the long-term de-trended temperature mean (see Tab. 11 in

the appendix and the respective marginal effect for the zero lag model in Fig. 7). Specifica-

tion (4) in Tab. 11 is close to Burke et al. (2015) except for the (small) quadratic temperature

deviation term that is implicitly included in their quadratic specification. 3

As Tab. 11 shows, the coefficients are highly sensitive to the number of lags considered

as the level of significance strongly changes. Moreover, even the sign of the interaction term

may reverse. The opposing sign of the two-year lagged weather variable compared to the

non-lagged and one-year lagged variable is consistent with the predicted catch-up growth after

negative weather shocks discussed in Section 2. The loss of significance of cumulative effects

over time indicates that weather deviations do not have permanent impacts on GRP levels.

In contrast, the specification with first differences shows a stable interaction term for various

choices of lags (see Tab. 10 in the appendix).

Tab. 4 considers in addition to the covariates of the main regression also dummy variables

that indicate whether a specific heat event occurred. For consistency, we consider again first-

differences in weather variables but also in heat event dummies. Hence, the 31-32°C dummy

equals one if the current year has at least one month with a SWBGT of 31 or 32°C and if

the previous year did not experience such an event. We always include the same number of

lags for heat events as for weather variables. Adding heat events hardly changes the estimates

of temperature and precipitation variables though their magnitude decreases marginally. Heat

events, however, additionally reduce GRP. The impact of a 37-38°C event is particularly strong

as it reduces GRP by 6% to 8%.

Further robustness checks are provided in Tab. 9 in the appendix. We modify the base

specification of the linear regression and the regression with interaction term by considering

different time trends (country specific and region specific) and by including the lagged endoge-

nous variable. Compared to the base specification, including the lagged endogenous variable

does hardly change the results.4 The negative coefficient of the endogenous variable indicates

that there is convergence growth after a shock has reduced GRP. This again emphasizes that

3The quadratic regression in Burke et al. (2015) is basically y = αx+βx2 + ε . Using temperature shocks T from
the time-invariant mean temperature x̄, we can substitute x = x̄+T and obtain (after leaving out time-invariant terms)
y = αT +2βT x̄+βT 2 + ε .

4The inclusion of the lagged dependent variable will, however, bias the estimated coefficients to a certain extent
(Nickell, 1981). However, as the coefficient of the lagged dependent variable is small (around -0.1) and as we have a
rather large number of observations over time, the Nickel bias should be small.
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Table 4: Panel Regression: Heat Events

(1) (2) (3) (4) (5) (6)
T -0.000664 0.000490 -0.00218∗ -0.000934 0.0102∗∗∗ 0.00863∗∗∗

(0.000985) (0.000988) (0.00123) (0.00124) (0.00195) (0.00196)

L.T -0.00414∗∗∗ -0.00378∗∗∗ 0.00588∗∗∗ 0.00549∗∗∗

(0.00125) (0.00126) (0.00209) (0.00213)

T × ET -0.00135∗∗∗ -0.00108∗∗∗

(0.000187) (0.000189)

L.T × ET -0.00104∗∗∗ -0.00101∗∗∗

(0.000193) (0.000205)

P -0.00352 -0.00555 0.0109∗∗∗ 0.00848∗∗ 0.00631 0.00349
(0.00389) (0.00391) (0.00399) (0.00402) (0.0109) (0.0110)

L.P 0.0304∗∗∗ 0.0288∗∗∗ 0.0321∗∗∗ 0.0309∗∗∗

(0.00360) (0.00360) (0.00944) (0.00945)

P × EP 0.000618 0.00157
(0.00466) (0.00469)

L.P × EP -0.00275 -0.00246
(0.00437) (0.00438)

Observations 29752 29752 29307 29307 29307 29307
N regions 1545 1545 1545 1545 1545 1545
bic -38342.5 -38327.1 -38109.1 -38071.2 -38120.5 -38059.2
T (cum) -.0063 -.0047 .0161 .0141
T (cum) [SE] .0022 .0022 .0037 .0037
T × ET (cum) -.0024 -.0021
T × ET (cum) [SE] .0003 .0003
31-32°C -.0023 .0012 -.0021
31-32°C [SE] .0038 .006 .0003
33-34°C -.01 -.0181 -.0069
33-34°C [SE] .006 .0099 .0101
35-36°C -.0406 -.049 -.0267
35-36°C [SE] .0071 .0126 .0131
37-38°C -.0701 -.0943 -.061
37-38°C [SE] .009 .0153 .0158
39°C -.0396 -.0576 -.021
39°C [SE] .017 .0577 .0582

Standard errors in parentheses
(cum) - cumulative effect over lags. [SE] - standard error. All standard errors clustered at region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 2: Marginal effect of annual temperature change, conditional on distance to coast (according to column (2) in
Tab. 12)

negative impacts of climate shocks on GRP diminish over time.

With respect to the consideration of time trends, we observe no major differences between

including country-specific or region-specific linear time trends (Tab. 9). The linear temperature

effect, however, becomes larger if we use only linear time trends compared to quadratic time

trends in our base specification.

It would be interesting to analyze further interaction terms, e.g. with respect to poverty,

national income, sectorial composition of GRP, population density or trade. All of these vari-

ables suffer from potential endogeneity problems as they might be affected by long-term cli-

mate conditions as well as by temperature shocks. A clearly exogenous variable in our dataset

is, however, distance to coast. We expect regions with smaller distance to coast to be richer

and more open to trade. Thus, weather shocks might affect these regions differently than land-

locked regions. We therefore test three major specifications: we interact weather with (i) a

dummy for whether the region has a port; (ii) a dummy for whether the region has a coast; (iii)

and the average distance to coast of the region.5 The results are shown in Tab. 12. The main

findings are that the interaction terms with dummy variables on port or coast are always in-

significant. Hence, regions with a port or a coast do not respond differently to weather shocks

than other regions. With respect to the continuous variable distance to coast, however, we find

a statistically significant impact of the interaction term.

Fig. (2) shows the marginal effect of annual temperature change with respect to distance

to coast. First, the sign of the marginal effect is for the vast majority of regions equal to

the sign of our base regression. Only in the extreme lower tale of regions close to the coast

the marginal effect of precipitation is negative. These findings suggest that regions which

5This is calculated from all points within the region and therefore always nonzero.
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are far away from the coast respond more strongly to precipitation but are less sensitive to

temperature changes. One explanation for this could be that the size of the agricultural sector

is larger in remote areas.6 While agriculture, in particular in developing countries, is strongly

dependent on rainfall, service and manufacturing sectors might be more strongly affected by

temperature shocks which reduce labor productivity. Another explanation could be related

to trade openness which should be higher for regions closer to the coast. Trade allows for

smoothing local agricultural supply shocks which tends to stabilize prices and food security.

In regions with little trade, rainfall shocks affect food supply strongly and, thus, might have

stronger impacts on the entire economy. As we cannot control directly for trade or sectoral

composition due to endogeneity problems, these considerations remain tentative and might be

subject to future research.

Overall, these robustness checks confirm the findings of the main specification: tempera-

ture shocks are positive (negative) for cold (hot) climates while the impact of precipitation is

positive and independent of climate conditions. Weather shocks affect GRP instantaneously

(up to the following year) but dissipate over time due to stronger convergence growth and,

hence, do not have permanent impacts on GRP level.

4.2 Long-term climate conditions

For investigating the impacts of the prevailing climate conditions, we use the cross-sectional

model (3). We include country fixed effects, distance to coast, distance to navigable rivers,

altitude and cumulative oil and gas extraction (million bbl oil equivalents) for the region. Cli-

mate and GRP data are aggregated to 10 year intervals with 2005-2014 as the reference period

because data coverage is largest for that period.7 Tab. 5 shows the results for three decades,

with varying geographical coverage.

First, over all three decades, the coefficient on temperature and GRP is statistically sig-

nificant and remarkably stable. One degree of temperature increase reduces GRP by 2-3%.

Precipitation is not significant. As expected, fossil resource extraction increases GRP while

distance to coast, distance to navigable rivers and altitude reduce GRP. The last three covariates

can be understood as proxies for trade costs and trade integration.

We provide a number of robustness checks in the appendix. First, if we reduce the sample

such that smaller regions are excluded, standard errors decrease and we get more precise es-

timates for the climate impacts (see Tab. 13). Larger areas show higher variability of climate

compared to other regions in the same country. The results also remain stable with respect to

the choice of covariates, except for altitude. Altitude is negatively correlated with tempera-

ture (mountainous regions are colder and more difficult to access). Omitting altitude from the

6We can confirm this relationship also in our data. If distance to coast doubles, the share of the agricultural sector
increases by almost 1 percentage point.

7As GRP is volatile, we only consider regions for temporal aggregation with at least two observations in a decade.
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Table 5: Crosssectional Regression

(1) (2) (3)
Temperature -0.0231∗ -0.0290∗∗ -0.0204∗∗

(0.0135) (0.0135) (0.00902)

Prec -0.00364 0.0193 -0.0655
(0.0612) (0.0597) (0.0561)

Cum Oil Gas 7.080∗∗ 5.588 3.819∗∗∗

(3.160) (3.495) (1.210)

Distance to Coast -0.113∗∗∗ -0.125∗∗∗ -0.0541∗

(0.0336) (0.0435) (0.0303)

Distance to River -0.0660∗ -0.0783∗ -0.0484
(0.0361) (0.0460) (0.0495)

Altitude -0.184∗∗ -0.190∗∗ -0.191∗∗∗

(0.0824) (0.0898) (0.0668)
Observations 1482 1398 673
N countries 75 67 34
Period 2005-2014 1995-2004 1985-1994

Standard errors in parentheses
Country FE included. Standard errors clustered at country level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

regression biases the temperature coefficient downwards which is also visible in Tab.13. Run-

ning the regression without country fixed-effects leads to much higher temperature coefficients

of about 10%. The magnitude of the temperature coefficient is similar among different climate

data sources, although significance levels slightly differ (Tab. 15).

In order to test for possible non-linear relationships between GRP and climate we replace

temperature and precipitation with bins that encode whether a specific temperature or precipi-

tation level hold for a region. Fig. 3 shows the estimated coefficients for the temperature bins,

using the 10-15°C bin as reference point. Regions with hot climate tend to have lower GRP. For

example, regions with on average 20-24°C per decade have approximately 30% lower GRP.

We do not observe strong non-linearities.

With respect to precipitation we find a u-shaped pattern (Fig. 4) implying high GRP in very

dry and in very wet regions. Standard errors of the different bins are, however, large so that it

is difficult to draw robust conclusions on the impact of precipitation on GRP.

4.3 Discussion

In Tab. 6, we contrast our estimates of climate impacts on GDP to panel and cross-sectional

analyses that are comparable to our analysis but use data at a lower level of regional resolu-

tion and/or different methodological specifications (i.e. log levels of weather variables rather

than deviations or first differences). For the panel as well for the cross-sectional results, our

estimates are, in general, slightly above previous ones. Particularly, the panel estimates for

tropical countries are three times higher than previous numbers. Since our estimates are based

on a large sample of countries and regions from all continents of the world, they improve these
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Figure 3: Cross-sectional regression with temperature bins. Geographical covariates and country fixed effects in-
cluded. Considered period: 2005-2014. Bars indicate 90% confidence intervals. The bottom shows a
histogram over temperature levels.
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Figure 4: Cross-sectional regression with precipitation bins. Geographical covariates and country fixed effects in-
cluded. Considered period: 2005-2014. Bars indicate 90% confidence intervals. The bottom shows a
histogram over precipitation.
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Study Finding
Annual panel models

Dell et al. (2012) 1-1.3% for poor countries, no effect for full sample
Garcı́a-León (2015) 0.03-0.06% for EU NUTS regions
Burke et al. (2015) -0.3% at 10°C and 1.3% at 26°C mean temperature
Our study 0.8% at 10°C and 4.6% at 26°C mean temperature

Cross-sectional models
Dell et al. (2009) 1.2-1.9% for Latin American municipalities
Garcı́a-León (2015) 1.6-2.2% for for EU NUTS regions
Our study 2.0-2.9%

Table 6: Impact of 1°C temperature increase on GDP - overview on findings from the literature

previous estimates and contribute to a more comprehensive understanding of climate impacts.

One particularly striking implication of our estimates as well as the overview provided in

Tab. 6 is that there tend to be small differences between panel and cross-sectional estimates

when looking at globally aggregated GDP losses. This suggests that short-term weather shocks

and long-term climate changes tend to have similar impacts on GDP and that adaptation is

hence limited. Regionally, however, short-run temperature shocks have quite different impacts

on GDP than long-run temperature changes as the former are conditional on climate while the

latter are linear in climate.

The results with respect to precipitation are less clear. While we find strong evidence

of positive impacts on GDP in our panel, precipitation is insignificant in the cross-sectional

regression. In related analyses (cited above), precipitation is also mostly insignificant.

One important aspect to consider when comparing panel and cross-sectional results are

dynamic equilibrium effects that take place over the long-run. Fankhauser and Tol (2005) em-

phasize that changes in productivity affect also savings dynamics. This, in turn, determines

capital stocks and production levels in the long run and adds to the original productivity shock

due to climate change. Kalkuhl and Edenhofer (2016) derive a multiplier effect due to sav-

ings dynamics that increases GDP losses compared to the original total factor productivity

(TFP) shock. In a one-sector Ramsey growth model with a Cobb-Douglas production function

this multiplier is 1/(1−α) with α denoting the capital income share. For a typical value of

α = 1/3, long-run GDP reductions due to endogenous decreases in capital stocks are about

50% higher than the immediate short-run reductions due to lower productivity. The multi-

plier effect can, however, change substantially in both directions if also sectoral re-allocations

are possible. Against this background, the long-term GDP impacts from the panel estimation

are likely to increase and become larger than the estimates from the cross-sectional regres-

sion. Interpreting the cross-sectional results as estimates that include the endogenous saving

response, the underlying productivity impact of climate is lower than the impact of short-term

(annual) climate in the panel. This perspective would indicate that similar estimates of GDP

losses from panel and cross-sectional regression are consistent with substantial adaptation as

the panel measures only productivity impacts while the latter approach measures GDP impacts

with saving and adaptation response.
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Table 7: Annual GDP Losses at RCP 8.5 in 2100

Variable Obs Mean Std. Dev. Min Max P1 P10 P50 P90 P99
Estimate from panel regression
Point estimate 3035 .102 .086 -.46 .321 -.105 -.007 .12 .204 .278
Lower estimate - 90% CI 3035 .073 .077 -.582 .25 -.139 -.024 .093 .159 .217
Upper estimate - 90% CI 3035 .131 .095 -.339 .392 -.072 .007 .147 .249 .34
Estimate from cross-sectional regression
Point estimate 3035 .092 .024 0 .221 .02 .067 .091 .121 .149
Lower estimate - 90% CI 3035 .004 .001 0 .009 .001 .003 .004 .005 .006
Upper estimate - 90% CI 3035 .181 .047 0 .433 .04 .131 .179 .238 .293

5 Projected economic output losses

We use our regression results on historic climate-GRP impacts to project GRP losses under

future warming. Projections on globally aggregated impacts rely not only on scenarios of

future warming but also on forecasts of region-specific economic and population growth. As

these are highly uncertain, we provide a basic region-specific estimation of the GRP loss in the

year 2100 with warming forecasts based on the RCP8.5 scenario.8 We further neglect potential

impacts on saving dynamics that may exacerbate GRP losses from productivity changes (see

discussion above).

For the estimate based on the panel regression, we calculate the region-specific damage

with the region-specific projected warming from 1980 to 2100, including the interaction term

with the de-trended temperature in 1980. This follows precisely the specification (3) in Tab. 3.

For the cross-sectional regression, we multiply the projected region-specific warming with the

estimated coefficient from (1) in Tab. 5. We provide additional estimates at the lower and upper

bound of the 90% confidence interval of the temperature-GRP coefficient. The (unweighted)

mean warming over all regions is 4°C.

Tab. 7 summarizes the region-specific impacts. We first see that regions’ annual GRP (un-

weighted mean) decreases by more than 9% for both approaches (panel as well as the cross-

sectional) in 2100 compared to the no-warming scenario. On an aggregate level, differences

between short-run climate shocks and long-run climate changes tend to be small. Regionally,

damages can vary substantially under cross-sectional and panel-based projections (Fig. 5).

Both approaches agree in the rather large losses in tropical areas but lead to diverging predic-

tions for temperate and (sub-)polar regions. Because of the climate interaction term, impacts

are much more diverse for the panel approach, as cold regions even benefit from warming

while hot regions lose disproportionately. At the first percentile, gains from warming are about

7.4% while at the 99th percentile, losses from warming are about 23.3%.

Contrary, the variability of GRP losses in the cross-sectional approach is purely driven

by heterogeneous warming of regions. Warming is stronger in polar and tropical regions –

these regions experience high GRP losses up to 15% of GRP (99th percentile). For the cross-

sectional regression, these estimates double if the upper estimate from the 90% confidence

8Hence, we assume homogeneous population and economic growth among regions.
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Figure 5: Regional GDP losses in 2100 in the RCP8.5 scenario with an average warming of 4.3°C using panel esti-
mates (above) and cross-sectional estimates (below).
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interval is used.

Compared to Burke et al. (2015) we find larger marginal effects because our regression

builds on spatially highly resolved data and can hence capture regional heterogeneity more

effectively (see Figure 1). Nonetheless, the projected total losses are lower than those found

by Burke et al. (2015). The main reason for this is that we use the first-difference specification

in estimating the damages while Burke et al. (2015) effectively use deviations in temperature

levels. The latter implies that in their projection, a permanent shift in temperature by, say, 1°C

causes every year the marginal damage again, although the temperature does not change. In

our first-difference approach, the economic damage only occurs in the year of the temperature

change (and the following year(s), depending on the lags considered). Thus, in our model, an

unanticipated but persisting temperature change in one year has a once-and-for-all effect on

GDP level compared to a once-and-for-all effect on GDP growth in Burke et al. (2015). As

discussed above, the main reason to choose the first-difference specification as the preferred

model is due to non-robustness of the specification of temperature levels with respect to the

lags considered. Using the level specification as in Burke et al. (2015) would lead to higher

damages than their projections because of the larger marginal effects.

Our estimated damages are high compared to existing damage functions in integrated as-

sessment models (e.g. Nordhaus and Boyer, 2000). However, the GDP-temperature relation-

ship from the regression models are essentially linear and scale with the level of warming.

Compared to widely adopted quadratic damage functions, this implies relatively large dam-

ages for small temperature changes but lower damages for high levels of warming.

Howard and Sterner (2017) provide a comprehensive overview on climate damage esti-

mates which includes various approaches. Contrary to damage functions in IAMs, our esti-

mates focus only on GDP shocks due to (historic) variability in temperature and precipitation.

We can understand these impacts primarily as impacts on labor productivity, land productivity

(agricultural yields) and depreciation of capital. Non-market damages like loss of life, conflicts

and violence, biodiversity and ecosystem damages are not captured. In particular, years of life

lost are not considered in our analysis which have been found to constitute the major share of

the costs of global warming in the United States (Hsiang et al., 2017). Damages due to sea

level rise are further not included in our regression model. As a consequence, one should un-

derstand our damage estimates as estimates on labor productivity, land productivity and capital

only. They contribute to the broader set of overall climate damages and provide only a partial

number to the total damages.

6 Conclusions and outlook

An increasing amount of analyses has been carried out to improve estimates of damage func-

tions which play a central role in the evaluation of climate policies. For example, economet-
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ric studies have analyzed how temperature fluctuations influence various socio-economic out-

comes to assess the effect of future warming on the economy or on specific economic sectors

(recently reviewed by Carleton and Hsiang (2016)).

Our analysis adds to this research as follows: by using a comprehensive dataset on regional

economic activity with almost global coverage, we identify the impact of (annual) weather and

(permanent) climate on economic activity. Consistent with existing evidence on labor produc-

tivity and agricultural yields, production is non-linearly influenced by temperature. Our panel

and cross-sectional estimates are also in line with the predicted impacts of a standard neoclas-

sical growth model where weather is represented by unanticipated, temporary productivity and

capital shocks while climate is represented by anticipated, permanent changes in productivity

and capital depreciation. While annual temperature shocks tend to have only temporary GDP

impacts that dissipate over the long-run due to convergence growth, changes in long-term tem-

perature conditions affect output levels permanently. This indicates that adaptation is limited.

Moreover, the impact of extreme temperature events emphasizes further limits to adaptation.

Our estimates of climate-GDP impacts are slightly higher than previous ones that were

obtained using data with less spatial detail. Using regional temperature projections from the

RCP8.5 scenario, we find that temperature increases of 4°C (unweighted mean) reduce GDP,

on average, by 9%. In tropical regions, however, output losses exceeding 20% are possible.

Note that non-market impacts and costs due to sea-level rise are not included in our damage

estimates. Further, changes in saving dynamics as a response to productivity changes may

effectively increase GDP losses from the panel estimate, but not from the cross-sectional esti-

mate as the latter establishes the long-run relationship between climate and GDP.

Our findings can help improve the formal representation of climate change impacts within

existing integrated assessment models by (i) better quantifying damage functions and (ii) dif-

ferentiating climate change impacts among short-term weather and long-term climate impacts.

So far, most integrated assessment models (IAMs) include only the impacts of long-term cli-

mate conditions on economic production but neglect annual weather shocks, extreme events or

uncertainty about weather realizations.

Finally, the discussion on endogenous saving dynamics and adaptation emphasizes that a

careful interpretation of the results of panel and cross-sectional regressions is necessary. This,

in turn, underlines the importance of incorporating empirical estimates correctly in aggregate

damage functions in IAM growth models.
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A Data sources for GRP

Country # of Admin.
Units

Data Source Years avail-
able

Income measurement

Albania 12 counties Albania Institute of Statistics 2008-2014 Nominal GDP per capita (ALL)
Argentina 24 provinces Ministry of Economics - Buenos Aires 1993-2014 GDP (ARS, available in both cur-

rent and 1993 prices)
Argentina 24 provinces Chubut Department of Statistics and Cen-

suses
2003-2013 GDP (ARS, current prices)

Argentina 24 provinces Cordoba Department of Statistics and Cen-
suses

1993-2014 GDP (ARS, available in both cur-
rent and 1993 prices)

Argentina 24 provinces Corrientes Department of Statistics and Cen-
suses

1993-2013 GDP (ARS, available in both cur-
rent and 1993 prices)

Argentina 24 provinces Entre Rios Department of Statistics and Cen-
suses

2004-2014 GDP (ARS, available in both cur-
rent and 2004 prices)

Argentina 24 provinces La Pampa Directorate General of Statistics 2000-2008 GDP (ARS, current prices)
Argentina 24 provinces Ministry of Economics - Mendoza 1971-2014 GDP (ARS, current prices)
Argentina 24 provinces Neuquen Department of Statistics and Cen-

suses
1960-2013 GDP (ARS, various base years)

Argentina 24 provinces Rio Negro Department of Statistics and Cen-
suses

2004-2013 GDP (ARS, current prices)

Argentina 24 provinces Ministry of Economics - Salta 1993-2012 GDP (ARS, available in both cur-
rent and 1993 prices)

Argentina 24 provinces San Luis Department of Statistics and Cen-
suses

1993-2007 GDP (ARS, available in both cur-
rent and 1993 prices)

Argentina 24 provinces Santa Fe Department of Statistics and Cen-
suses

1993-2013 GDP (ARS, available in both cur-
rent and 1993 prices)

Argentina 24 provinces Tierra del Fuego Department of Statistics
and Censuses

”1980-1984
2003-2014”

GDP (ARS, constant 1993 prices)

Argentina 24 provinces Tucuman Department of Statistics and Cen-
suses

1995-2013 GDP (ARS, constant 1993 prices)

Australia 6 states, 2 territo-
ries

Australian Bureau of Statistics - Australian
State Accounts 1995-96

1985-1996 Real GDP (AUD, average
1989/1990 prices)

Australia 6 states, 2 territo-
ries

Australian Bureau of Statistics - Australian
State Accounts 2014-15

1991-2014 Real GDP (AUD, chain volume
measures and current prices)

Australia 6 states, 2 territo-
ries

Neri (1998) 1861-1992 Real GDP per capita (AUD,
1910/11 prices)

Austria 9 Regions Statistik Austria 2000-2014 GVA in basic prices (Eur)
Azerbaijan 10 regions The State Statistical Committee of the Re-

public of Azerbaijan
2006-2016 Output production ( AZN)

Belarus 6 Regions National Statistical Office of the Republic of
Belarus

2009-2014 GVA (BYR)

Belgium 3 Regions Eurostat 2003-2013 GDP in current prices (EUR)
Belgium 3 Regions Eurostat: Regional Yearbooks 1970-1985,

1989-1990,
1992-1994

Gross value added in market prices
(ECU)

Bolivia 9 departments Bolivia National Institute of Statistics 1989-2014 GDP (BOB, available in both cur-
rent and 1990 prices)

Bosnia and
Herzegovina

3 Regions Agency for Statistics of Bosnia and Herze-
govina

2003-2015 GDP in current prices (KM)

Brazil 27 federative
units

Brasilian Institute for Applied Economic Re-
search

1939-2009 Real GDP, 2000 prices

Brazil 27 federative
units

Brasilian Institute for Applied Economic Re-
search

2010-2013 GVA (%)

Bulgaria 28 Provinces National Statistical Institute of the Republic
of Bulgaria

2000-2014 GVA in current prices

Canada 10 provinces, 3
territories

Statistics Canada 1984-1999 Real GDP (CAD, constant 1992
prices, also available in current
prices)

Canada 10 provinces, 3
territories

Statistics Canada 1998-2008 GDP (CAD, current prices)

Canada 10 provinces, 3
territories

Statistics Canada 2009-2012 Real GDP (CAD, chained 2007
prices, also available in current
prices)

Chile 13 regions Vernon (2004) 1960-2001 RGDP per capita (CLP, 1996
prices)

31



Chile 13 regions Central Bank of Chile 1985-2009 Real GDP (CLP, various base
years)

Chile 16 regions Central Bank of Chile 2010-2015 Real GDP (CLP, base year 2008)
China 31 provinces National Bureau of Statistics: China Com-

pendium of Statistics 1949-2008
1949-2008 Real per capita GDP (CNY)

China 31 provinces National Bureau of Statistics: China Statisti-
cal Yearbooks

1995-2014 GDP (CNY, current prices)

Colombia 32 departments Colombia National Administrative Depart-
ment of Statistics

1990-2012 GDP (COP, available in both cur-
rent and constant prices (various
base years))

Colombia 32 departments Colombia National Administrative Depart-
ment of Statistics

2000-2015 GVA (COP, current prices and con-
stant price based on 2005 level)

Colombia 32 departments Lira (2003) 1980-1996 RGDP (COP, 1976 prices)
Croatia 20 counties Croatian Bureau of Statistics 2000-2014 GVA in current prices (Kuna)
Czech Re-
public

13 regions Czech Statistical Office 1995-2015 GVA (CZK, current prices)

Denmark 5 Regions Statistics Denmark 1993-2015 Production and generation of in-
come (current prices)

Ecuador 24 provinces Central Bank of Ecuador 2007-2014 GVA, current prices (USD)
Ecuador 24 provinces Central Bank of Ecuador 1993-1996 GVA, 2000 prices (USD)
Ecuador 24 provinces Central Bank of Ecuador 2001-2006 GVA, 2000 prices (USD)
Egypt 27 Governorates UN Human Development Reports 1998-2001,

2003, 2005,
2007

GDP (LE)

El Salvador 14 Departments UN Human Development Reports 1996,1999,
2002,
2004, 2006,
2009,2012

GDP per capita PPP (USD)

Estonia 15 counties Statistics Estonia 1995-2015 GDP in current prices (EUR)
Ethiopia
(Amhara)

9 regional states Amhara Bureau of Finance and Economic
Development

1998-2003 GDP (ETB, current prices)

Ethiopia
(Oromiya)

9 regional states Oromia Bureau of Finance and Economic
Development

1992-2001 GDP (ETB, current prices)

Ethiopia
(Tigray)

9 regional states Tigray Bureau of Planning and Finance 2005-2009 GDP per capita (ETB, current
prices)

Finland 5 provinces Statistics Finland 1975-2008, GDP in current prices (EUR)
France 21 regions (ex-

cluding overseas)
INSEE 1990-2013 GVA (EUR, 2010 prices)

France 21 regions (ex-
cluding overseas)

Eurostat: Regional Yearbooks ”1970-1985
1989-1990
1992-1994”

Gross value added in market prices
(ECU)

Georgia 12 regions National Statistics Office of Georgia 2006-2014 GVA (GEL, current prices)
Greece 13 regions Hellenic Statistical Authority 2000-2013 GVA (current prices, EUR)
Greece 13 regions Eurostat: Regional Yearbooks ”1985

1989-1990
1992-1994”

Gross value added in market prices
(ECU)

Guatemala 22 departments Secretariat of Planning and Programming of
the Presidency

2004-2008 GDP per capita (GTQ)

Honduras 18 Departments UN Human Development Reports 1990-2004 Estimated GDP per capita PPP
Hungary 19 counties + Bu-

dapest
Hungarian Central Statistical Office 2000-2015 GDP per capita (HUF, current

prices)
Hungary 19 counties + Bu-

dapest
Nagy (2005) 1975; 1994-

2002
GDP index values (country=100)

India 29 states Indian Ministry of Statistics 1980-1985 GDP (INR, current prices)
India 29 states Indian Ministry of Statistics 1993-2005 GDP (INR, current prices)
India 29 states Indian Ministry of Statistics 2004-2014 GDP (INR, current prices)
Indonesia 34 provinces Statistics Indonesia: Gross Regional Domes-

tic Product of Provinces in Indonesia by In-
dustrial Origin

2004-2014 GDP (IDR, available in both current
and constant prices)

Indonesia 34 provinces Resosudarmo and Vidyattama (2009) 1971, 1983,
1996, 2002

Per capita GDP (current prices)

Iran 31 provinces Statistical Centre of Iran 2000-2013 GVA (current prices, IRR)
Ireland 32 counties Central Statistics Office 2000-2014 Income per person (EUR)
Ireland 32 counties Central Statistics Office 1995-2003 Income per person
Italy 20 regions Italian National Institute of Statistics 1995-2013 Gross value added (EUR, available

in both nominal and real (chain-
linked 2010 prices)

32



Italy 20 regions Eurostat: Regional Yearbooks ”1970-1985
1989-1990
1992-1994”

Gross value added in market prices
(ECU)

Italy 20 regions Felice and Vecchi (2015) 1871-2009 RGDP per capita (EUR, 2011
prices)

Japan 47 prefectures Cabinet Office, government of Japan 1975-2012 GDP (JPY, available in both nomi-
nal and real)

Japan 47 prefectures Cabinet Office, government of Japan 1955-1974 RGDP (JPY, 1980 prices)
Kazakhstan 14 regions National Accounts of the Republic of Kaza-

khstan
1998-2014 GVA (KZT, current prices)

Kenya 8 provinces Kenya National Bureau of Statistics: Statis-
tical abstracts

1969-2012 Labour earnings (KES), 2000
prices

Kyrgyzstan 9 regions National Statistical Committee of the Kyr-
gyz Republic

2006-2015 Gross regional product (current
price, KGS)

Laos 18 regions Yale Gecon 1995 GDP per capita (LKP)
Laos 18 regions JICA (2012) 2010 GDP(LKP, current prices)
Laos (Sara-
van)

18 regions Poverty-Environment Initiative (2011) 2006-2010 GDP (LKP, current prices)

Laos (Savan-
nakhet)

18 regions Nolintha (2011) 2006-2010 GDP per capita (USD)

Latvia 5 regions Central Statistical Bureau of Latvia 2000-2011 GDP, current prices (EUR)
Lithuania 10 Regions Eurostat 2000-2014 GVA, current prices (EUR)
Malaysia 15 States Cheng (2011) 1970, 1971,

1980, 1985,
1990, 1995,
2000

GDP per capita (constant price)

Malaysia 15 states Department of Statistics Malaysia 2005-2013 GDP (RM, constant 2005 prices)
Malaysia 16 states Department of Statistics Malaysia (e-

statistik service)
2010-2015 GDP (RM, constant 2010 prices)

Mexico 31 states National Institute of Statistics 2005-2014 GDP (MXN, current prices)
Mexico 31 states National Institute of Statistics 1993-2007 GDP (MXN, current prices)
Mexico 31 states German-Soto (2005) 1940-2001 RDGP per capita (MXN, 1993

prices)
Mongolia 22 provinces Mongolia Statistical Information Services 2000-2015 GDP per capita (MNT, current

prices)
Morocco 12 regions Moroccan High Planning Commission 2007, 2009-

2013
Per capita GDP (constant 2007
prices, MAD)

Mozambique 11 regions African Development Bank 2000-2009 GDP per capita (current prices MT)
Nepal 5 Regions UN Human Development Reports 1996, 1999,

2001, 2006,
2011

GDP at market prices (RS), GVA,
GDP per capita (USD PPP), per
capita income

Netherlands 12 regions Statistics Netherlands 1995-2014 GVA (EUR)
New Zealand 15 regions Statistics New Zealand 2000-2014 GDP (NZD, current prices
Norway 21 Counties Statistics Norway 1973, 1976,

1980, 1983
GVA current prices (NOK)

Norway 22 Counties Statistics Norway 1986.1992 Gross Production current prices
(NOK)

Norway 21 Counties Statistics Norway 1997-2014 GVA current prices (NOK)
Pakistan 4 provinces Arby (2008) 1970-2005 Real GDP (PKR, 1999-2000 prices)
Pakistan 4 provinces Pakistan Bureau of Statistics - Household In-

tegrated Economic Survey
2005-2013 Household income

Panama 10 provinces Panama National Institute of Statistics 1996-2010 Real GDP (PAB, 1996 prices)
Paraguay 17 departments General Directorate of Statistics Paraguay -

Permanent household survey (EPH)
2006-2015 Average monthly income

Peru 25 regions Peru National Institute of Statistics 2007-2014 GDP (PEN, available in both cur-
rent and 2007 prices)

Peru 25 regions Peru National Institute of Statistics 2001-2011 Real GDP (PEN, 1994 prices)
Peru 25 regions Lira (2003) 1970-1995 RGDP (PEN, 1979 prices)
Philippines 18 regions Philippines Institutue for Development Stud-

ies
2002-2009 GDP(PHP, current prices)

Philippines 18 regions Philippines Institutue for Development Stud-
ies

2009-2015 GDP(PHP, current prices)

Philippines 19 regions Philppines Statistics Authority 1975-2001 GDP(PHP, current prices)
Poland 16 provinces Central Statistical Office of Poland 1995-2014 GVA, current prices (PLN)
Romania 42 counties National institute of Statistics Romania 1995-1999 GDP basic prices (RON)
Romania 42 counties Eurostat 2000-2014 GVA basic prices (RON)
Russia 83 federal sub-

jects
Federal State Statistics Service of the Rus-
sian Federation

2004-2014 GVA (RUB, current prices)
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Russia 83 federal sub-
jects

Federal State Statistics Service of the Rus-
sian Federation

1998-2014 GVA (RUB, current prices)

Russia 83 federal sub-
jects

Ponomarenko (2000) 1994-1996 GDP per capita (RUB, current
prices)

Serbia 25 districts Statistical office of the Republic of Serbia 1999-2015 GDP, GDP per capita
Slovakia 8 regions Statistical Office of the Slovak Republic 2010-2015 GVA in current prices (EUR)
Slovenia 12 regions Statistics Office of the Republic of Slovenia 2000-2015 GVA, current prices (EUR)
South Africa 9 provinces Statistics South Africa 1995-2004 GDP (ZAR, current prices)
South Africa 9 provinces Statistics South Africa 2004-2013 GDP (ZAR, current prices)
South Korea 16 provinces Korean Statistical Information Service 1985-2014 GDP (KRW, current prices)
Spain 19 autonomous

communities
Eurostat 2000-2014 Gross value added in basic prices

(EUR)
Spain 17 autonomous

communities
Eurostat: Regional Yearbooks ”1985

1989-1990
1992-1994”

Gross value added in market prices
(ECU)

Spain 19 autonomous
communities

Instituto Nacional de Estadistica 1995-2003,
1986-1996

Gross Value Added at market prices

Sweden 21 counties Enflo et al. (2015) 1855-2000 GDP (SEK, current prices)
Sweden 21 counties Statistics Sweden 1993-2000 GDRP (SEK, current prices)
Sweden 21 counties Eurostat 2000-2014 GVA( EUR, current prices)
Switzerland 26 cantons Swiss Federal Statistics Office 2008-2013 GVA (CHF, current prices)
Tanzania 30 regions Tanzania National Bureau of Statistics 2000-2013 Per capita GDP (TZS, current

prices)
Tanzania 30 regions The Planning Commission Dar Es Salaam 1980, 1985,

1990, 1994
Per capita GDP (TZS, current
prices)

Thailand 76 provinces Office of the National Economic and Social
Development Board

1981-2013 GDP (THB, available in both cur-
rent and 2002 prices)

Turkey 81 provinces Turkish Statistical Institutue 1987-2014 RGDP per capita (TRY)
Turkey 81 provinces Karaca (2004) 1975-1986 RGDP per capita (TRY)
UAE 7 emirates UAE Statistics Institute 2001-2009 GDP per capita (AED, current

prices)
UK 4 regions Office for National Statistics 1997-2011 GVA (GBP, current prices)
UK 4 regions Office for National Statistics 1968-1970 GDP per capita (GBP, current

prices)
UK 4 regions Eurostat: Regional Yearbooks ”1970-1985

1989-1990
1992-1994”

Gross value added in market prices
(ECU)

UK 4 regions Crafts (2005) 1871-1911 GDP (GBP, current prices)
Ukraine 27 regions State Statistics Service of Ukraine 2004-2014 GDP per capita, current prices

(UAH)
Ukraine 27 regions Mykhnenko and Swain (2009) 1990-2007 GDP per capita (index values, coun-

try=100)
Uruguay 19 departments Garcı́a et al. (2014) 1908, 1936,

1955, 1961
GVA current prices (UYU)

Uruguay 19 departments Observatorio Territorio Uruguay 2008-2011 GDP current prices (UYU)
USA 50 states Bureau of Economic Analysis 1963-2014 Real per capita GDP (USD)
Uzbekistan 14 Regions UN Human Development Reports 1995-2005 Real GDP per capita (PPP USD)
Venezuela 23 states Valecillos (1998) 1950-1990 Real GDP (VEF)
Vietnam 64 provinces Data received from Thang 1995-2008 Real GDP, 1994=100 (VND)
West Ger-
many

10 states Statistische Ämter des Bundes und der
Länder

2000-2012 Gross value added (EUR, current
prices)

Table 8: Data sources for regional economic output.
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Figure 6: Data coverage: Availablity of Gross Regional Product (GRP) data per region
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B Robustness Checks

B.1 Annual Panel Model

Figure 7: Marginal effect (right y-axis) of annual temperature change according to column (4)–(6) in Tab. 10 (first-
difference with 0,1 and 2 lags), column (4) in Tab. 11 (deviation from trend) and Burke et al. (BHM 2015).
Grey bars indicate frequence of temperature observations in our panel.
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Table 9: Panel Regression: Robustness Checks

(1) (2) (3) (4) (5) (6) (7) (8)
T -0.00218∗ -0.00430∗∗∗ -0.00445∗∗∗ -0.000954 0.0102∗∗∗ 0.00696∗∗∗ 0.00669∗∗∗ 0.00921∗∗∗

(0.00123) (0.00118) (0.00122) (0.00119) (0.00195) (0.00184) (0.00189) (0.00178)

L.T -0.00414∗∗∗ -0.00631∗∗∗ -0.00648∗∗∗ -0.00585∗∗∗ 0.00588∗∗∗ 0.00229 0.00200 0.00281∗

(0.00125) (0.00117) (0.00121) (0.00111) (0.00209) (0.00197) (0.00204) (0.00170)

T × ET -0.00135∗∗∗ -0.00123∗∗∗ -0.00121∗∗∗ -0.00108∗∗∗

(0.000187) (0.000180) (0.000186) (0.000177)

L.T × ET -0.00104∗∗∗ -0.000896∗∗∗ -0.000884∗∗∗ -0.000896∗∗∗

(0.000193) (0.000187) (0.000193) (0.000176)

P 0.0109∗∗∗ 0.0107∗∗∗ 0.0110∗∗∗ 0.00592 0.00631 0.00721 0.00757 0.00265
(0.00399) (0.00394) (0.00406) (0.00414) (0.0109) (0.0108) (0.0111) (0.0111)

L.P 0.0304∗∗∗ 0.0280∗∗∗ 0.0283∗∗∗ 0.0270∗∗∗ 0.0321∗∗∗ 0.0298∗∗∗ 0.0298∗∗∗ 0.0270∗∗∗

(0.00360) (0.00359) (0.00369) (0.00342) (0.00944) (0.00938) (0.00970) (0.00921)

P × EP 0.000618 0.000142 0.000121 0.000319
(0.00466) (0.00463) (0.00478) (0.00473)

L.P × EP -0.00275 -0.00256 -0.00245 -0.00154
(0.00437) (0.00437) (0.00454) (0.00430)

L.Annual GDP growth in region -0.0929∗∗∗ -0.0930∗∗∗

(0.0166) (0.0165)
Observations 29307 29307 29307 27833 29307 29307 29307 27833
N regions 1545 1545 1545 1519 1545 1545 1545 1519
bic -38109.1 -35437.1 -36739.9 -37489.5 -38130.8 -35452.9 -36744.3 -37506.2
Note Base Cn trend Reg trend Dynamic Base Cn trend Reg trend Dynamic
T (cum) -.0063 -.0106 -.0109 -.0068 .0161 .0092 .0087 .012
T (cum) [SE] .0022 .0021 .0021 .002 .0037 .0034 .0035 .003
T × ET (cum) -.0024 -.0021 -.0021 -.002
T × ET (cum) [SE] .0003 .0003 .0003 .0003
P (cum) .0413 .0387 .0393 .0329 .0384 .037 .0374 .0297
P (cum) [SE] .0059 .0059 .006 .006 .0148 .0146 .0151 .0151
P × EP (cum) -.0021 -.0024 -.0023 -.0012
P × EP (cum) [SE] .0066 .0066 .0068 .0068

Standard errors in parentheses
(cum) - cumulative effect over lags. [SE] - standard error. All standard errors clustered at region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Panel Regression: Various Lags (Using Weather 1st-Diff)

(1) (2) (3) (4) (5) (6)
T -0.000664 -0.00218∗ -0.00209 0.00828∗∗∗ 0.0102∗∗∗ 0.00852∗∗∗

(0.000985) (0.00123) (0.00133) (0.00154) (0.00195) (0.00230)

L.T -0.00414∗∗∗ -0.00451∗∗∗ 0.00588∗∗∗ 0.00294
(0.00125) (0.00155) (0.00209) (0.00312)

L2.T -0.000930 -0.00548∗

(0.00143) (0.00295)

T × ET -0.001000∗∗∗ -0.00135∗∗∗ -0.00114∗∗∗

(0.000156) (0.000187) (0.000217)

L.T × ET -0.00104∗∗∗ -0.000743∗∗∗

(0.000193) (0.000270)

L2.T × ET 0.000534∗∗

(0.000243)

P -0.00352 0.0109∗∗∗ 0.0139∗∗∗ -0.00891 0.00631 0.00415
(0.00389) (0.00399) (0.00408) (0.0113) (0.0109) (0.0114)

L.P 0.0304∗∗∗ 0.0314∗∗∗ 0.0321∗∗∗ 0.0346∗∗∗

(0.00360) (0.00406) (0.00944) (0.0103)

L2.P 0.00258 0.00000429
(0.00341) (0.00884)

P × EP 0.00150 0.000618 0.00342
(0.00474) (0.00466) (0.00485)

L.P × EP -0.00275 -0.00350
(0.00437) (0.00448)

L2.P × EP 0.00187
(0.00440)

Observations 29752 29307 28855 29752 29307 28855
N regions 1545 1545 1545 1545 1545 1545
F . . . . . .
bic -38321.9 -38109.1 -36037.2 -38529.7 -38120.5 -36035.2
T (cum) -.0007 -.0063 -.0075 .0083 .0161 .006
T (cum) [SE] .001 .0022 .0036 .0015 .0037 .0075
T × ET (cum) -.001 -.0024 -.0013
T × ET (cum) [SE] .0002 .0003 .0006

Standard errors in parentheses
(cum) - cumulative effect over lags. [SE] - standard error. All standard errors clustered at region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Panel Regression: Various Lags (Using Weather Deviation)

(1) (2) (3) (4) (5) (6)
T -0.00261∗ -0.00247∗ -0.00196 0.00802∗∗∗ 0.00742∗∗∗ 0.00665∗∗∗

(0.00146) (0.00150) (0.00151) (0.00243) (0.00249) (0.00247)

L.T -0.00216 -0.00232 -0.00877∗∗∗ -0.00751∗∗∗

(0.00143) (0.00147) (0.00254) (0.00256)

L2.T 0.00380∗∗∗ -0.00980∗∗∗

(0.00146) (0.00237)

T × ET -0.00115∗∗∗ -0.00109∗∗∗ -0.000954∗∗∗

(0.000218) (0.000223) (0.000220)

L.T × ET 0.000768∗∗∗ 0.000604∗∗∗

(0.000221) (0.000222)

L2.T × ET 0.00142∗∗∗

(0.000223)

P 0.0120∗∗∗ 0.0121∗∗∗ 0.0147∗∗∗ 0.00708 0.00863 0.00253
(0.00429) (0.00441) (0.00455) (0.0115) (0.0120) (0.0124)

L.P 0.0205∗∗∗ 0.0183∗∗∗ 0.0270∗ 0.0287∗

(0.00533) (0.00525) (0.0145) (0.0147)

L2.P -0.0279∗∗∗ -0.0350∗∗∗

(0.00449) (0.0114)

P × EP 0.00125 0.000174 0.00468
(0.00490) (0.00517) (0.00542)

L.P × EP -0.00266 -0.00571
(0.00632) (0.00641)

L2.P × EP 0.00575
(0.00543)

Observations 29752 29307 28855 29752 29307 28855
N regions 1545 1545 1545 1545 1545 1545
F . . . . . .
bic -38312.8 -38101.7 -35872.4 -38271.6 -38099.1 -35820.5
T (cum) -.0026 -.0046 -.0005 .008 -.0014 -.0107
T (cum) [SE] .0015 .0021 .0026 .0024 .004 .0046
T × ET (cum) -.0011 -.0003 .0011
T × ET (cum) [SE] .0002 .0003 .0004

Standard errors in parentheses
(cum) - cumulative effect over lags. [SE] - standard error. All standard errors clustered at region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 12: Panel Regression: Interaction with Coastal Distance

(1) (2) (3) (4)
T -0.00218∗ -0.0166∗∗∗ -0.000546 -0.00216

(0.00123) (0.00406) (0.00157) (0.00149)

L.T -0.00414∗∗∗ -0.000915 -0.00575∗∗∗ -0.00543∗∗∗

(0.00125) (0.00377) (0.00156) (0.00149)

T × Dist Coast 0.00297∗∗∗

(0.000768)

L.T × Dist Coast -0.000646
(0.000742)

T × Coast -0.00357
(0.00232)

L.T × Coast 0.00417∗

(0.00242)

T × Port 0.000498
(0.00234)

L.T × Port 0.00424∗

(0.00248)

P 0.0109∗∗∗ -0.0361∗∗∗ 0.0212∗∗∗ 0.0166∗∗∗

(0.00399) (0.0118) (0.00720) (0.00527)

L.P 0.0304∗∗∗ 0.0204∗ 0.0296∗∗∗ 0.0304∗∗∗

(0.00360) (0.0106) (0.00662) (0.00491)

P × Dist Coast 0.0117∗∗∗

(0.00315)

L.P × Dist Coast 0.00246
(0.00285)

P × Coast -0.0171∗∗

(0.00766)

L.P × Coast 0.00134
(0.00759)

P × Port -0.0149∗∗

(0.00678)

L.P × Port -0.000724
(0.00691)

Observations 29307 29293 29307 29307
N regions 1545 1544 1545 1545
bic -38109.1 -38167.3 -38085.2 -38077.4
Note Base Dist to Coast Coast Dummy Port Dummy
T (cum) -.0063 -.0176 -.0063 -.0076
T (cum) [SE] .0022 .0066 .0027 .0026
T Interact Eff (cum) .0023 .0006 .0047
T Interact Eff (cum) [SE] .0013 .0041 .0042
P (cum) .0413 -.0157 .0508 .047
P (cum) [SE] .0059 .0163 .0102 .0075
P Interact Eff (cum) .0142 -.0157 -.0156
P Interact Eff (cum) [SE] .0043 .0116 .0108

Standard errors in parentheses
(cum) - cumulative effect over lags. [SE] - standard error. All standard errors clustered at region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.2 Cross-sectional model

Table 13: Cross-sectional Regression – Robustness against Area Size of Regions

(1) (2) (3) (4) (5)
Temperature -0.0231∗ -0.0228∗ -0.0253∗ -0.0261∗∗ -0.0259∗∗

(0.0135) (0.0135) (0.0135) (0.0127) (0.0128)

Prec -0.00364 0.0113 0.0304 0.0180 -0.00481
(0.0612) (0.0651) (0.0702) (0.0818) (0.0736)

Cum Oil Gas 7.080∗∗ 7.267∗∗ 7.023∗∗ 7.009∗∗ 7.008∗∗

(3.160) (3.119) (3.210) (3.179) (3.087)

Distance to Coast -0.113∗∗∗ -0.100∗∗∗ -0.0922∗∗ -0.0781∗∗ -0.0577∗∗

(0.0336) (0.0335) (0.0351) (0.0300) (0.0276)

Distance to River -0.0660∗ -0.0452 -0.0223 -0.00939 -0.00158
(0.0361) (0.0348) (0.0334) (0.0349) (0.0416)

Altitude -0.184∗∗ -0.172∗∗ -0.171∗∗ -0.168∗∗ -0.172∗∗

(0.0824) (0.0833) (0.0854) (0.0795) (0.0774)
Observations 1482 1412 1273 1051 877
N countries 75 75 74 71 67
Minimum area (km2) All 1000 2500 5000 7500

Standard errors in parentheses
Country FE included. Standard errors clustered at country level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 14: Cross-sectional Regression – Robustness Against Geographical Covariates

(1) (2) (3) (4) (5) (6)
Temperature -0.0231∗ -0.0979∗∗∗ -0.0248∗ -0.0252∗ -0.0249∗ 0.00112

(0.0135) (0.0188) (0.0147) (0.0141) (0.0131) (0.00996)

Prec -0.00364 0.0891 0.00409 0.00303 0.0391 0.0687
(0.0612) (0.170) (0.0631) (0.0622) (0.0647) (0.0636)

Cum Oil Gas 7.080∗∗ 9.793∗∗ 7.474∗∗

(3.160) (3.923) (2.949)

Distance to Coast -0.113∗∗∗ -0.303∗∗∗ -0.0919∗∗ -0.111∗∗∗

(0.0336) (0.0790) (0.0372) (0.0338)

Distance to River -0.0660∗ -0.0428 -0.0481 -0.0597
(0.0361) (0.141) (0.0385) (0.0361)

Altitude -0.184∗∗ -0.309∗∗∗ -0.193∗∗ -0.197∗∗ -0.256∗∗∗

(0.0824) (0.114) (0.0869) (0.0842) (0.0764)

Area -0.0389∗

(0.0208)
Observations 1482 1482 1482 1482 1483 1484
N countries 75 75 75 75 75 75
Country FE yes no yes yes yes yes

Standard errors in parentheses
Country FE included. Standard errors clustered at country level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 15: Crosssectional Regression – Robustness against Climate Data Sources

(1) (2) (3) (4) (5) (6)
Temperature -0.0231∗ -0.0149 -0.0217 -0.0290∗∗ -0.0255∗ -0.0280∗

(0.0135) (0.0124) (0.0143) (0.0135) (0.0129) (0.0145)

Precipitation -0.00364 -0.00101 -0.0000602 0.0193 -0.000810 -0.0000116
(0.0612) (0.00116) (0.0000579) (0.0597) (0.00153) (0.0000632)

Cum Oil Gas 7.080∗∗ 7.703∗∗ 6.923∗∗ 5.588 5.955 5.215
(3.160) (3.241) (3.136) (3.495) (3.650) (3.505)

Distance to Coast -0.113∗∗∗ -0.113∗∗∗ -0.119∗∗∗ -0.125∗∗∗ -0.124∗∗∗ -0.131∗∗∗

(0.0336) (0.0345) (0.0331) (0.0435) (0.0448) (0.0419)

Distance to River -0.0660∗ -0.0720∗ -0.0727∗∗ -0.0783∗ -0.0874∗ -0.0789∗

(0.0361) (0.0365) (0.0334) (0.0460) (0.0456) (0.0434)

Altitude -0.184∗∗ -0.145∗ -0.191∗∗ -0.190∗∗ -0.176∗∗ -0.195∗∗

(0.0824) (0.0757) (0.0858) (0.0898) (0.0878) (0.0960)
Observations 1482 1482 1490 1398 1398 1400
N countries 75 75 75 67 67 67
Data source CRU CRU/E-OBS WorldClim CRU CRU/E-OBS WorldClim
Period 2005-2014 2005-2014 2005-2014 1995-2004 1995-2004 1995-2004

Standard errors in parentheses
Country FE included. Standard errors clustered at country level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.3 Damage projections

Figure 8: Frequency of damage magnitude over all regions. Top: Damages based on panel estimate. Bottom: Dam-
ages based on cross-sectional estimate.
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